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We report a measurement of the resonance properties of Λc(2595)+ and Λc(2625)+ in its decays to
Λ+

c π+π− as well as Σc(2455)++,0 and Σc(2520)++,0 in its decays to Λ+
c π±. The measurement is

performed using 5.2 fb−1 of integrated luminosity from pp̄ collisions at
√

s = 1.96 TeV, collected
with the CDF II detector at the Fermilab Tevatron. Exploiting the largest available sample in the
world, we measure masses and widths which are competitive to the world averages for Σc states and
significantly more precise than the world averages for excited Λc states.
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I. INTRODUCTION

Heavy quark baryons provide, in the same way as heavy quark mesons, an interesting laboratory for studying and
testing Quantum Chromodynamics (QCD), the theory of strong interactions. Heavy quark mesons are the closest
analogy to the hydrogen atom, which provided important tests of Quantum Electrodynamics. In this analogy we
can consider the heavy quark meson as the ”hydrogen atom” of QCD. Heavy quark baryons are the next step,
where we have a state with one heavy quark and two light quarks, which are often treated together as diquark and so
effectively provide the same laboratory as heavy quark mesons. The heavy quark states test regions of the QCD, where
perturbation calculations cannot be used and many different approaches to solve the theory were developed. Just
a few examples of them are heavy quark effective theory, non-relativistic and relativistic potential models or lattice
QCD. While theory is more precise for hadrons containing a b-quark, thanks to much higher statistics experiments can
currently provide more precise information on hadrons containing a c-quark. In this note we concentrate on Λc(2595),
Λc(2625), Σc(2455) and Σc(2520) baryons.

On theory side, many different predictions exist on both charm and bottom baryons. In table I we summarize some
examples using different approaches. For completeness, Ref. [1] uses a bag model, Refs. [2] and [3, 4] are based on the
quark model, Ref. [5] uses QCD sum rules and finally Ref. [6] uses lattice QCD for their prediction. There are few

Hadron [1] [2] [5] [3, 4] [6]
Σc(2455) 2393 2455 2400 ± 310 2439 2452
Σc(2520) 2489 2519 2560 ± 240 2518 2538
Λc(2595) - 2625 2530 ± 220 2598 -
Λc(2625) - 2636 2580 ± 240 2628 -

TABLE I. Few examples of theory predictions for masses of the charm baryons under study. All numbers are given in MeV/c2.

calculations which predict the Σc(2455) width in the region of 1-3 MeV/c2 [7–12] and the Σc(2520) width to be about
18 MeV/c2 [12]. For Λc(2595) and Λc(2625) up to our current knowledge there are no predictions for the natural
widths.

On the experimental side, all four states were observed before and some of their properties measured. Omitting
Σ+

c states, which cannot be detected by the CDF detector, we list the world average masses and widths in table II
[13]. For Σc(2455) many different measurements exist with most of the information coming from CLEO [14] and
FOCUS [15]. Experimental information on the Σc(2520) state comes practically exclusively from CLEO [16, 17]. It is
worth to note that the two CLEO results on Σc(2520) give inconsistent masses. For the Λc(2595) and Λc(2625) three
experiments contributed up to now, namely ARGUS [18], E687 at Fermilab [19] and CLEO [20]. In all three cases,
their statistics is rather low. Again, the mass of the Λc(2625) is not consistent between the different experiments. In
addition, Blechman and co-workers showed that a more sophisticated treatment, which would take into account the
proximity of the threshold in the Λc(2595) decay, yields a Λc(2595) mass which is 2-3 MeV/c2 below the one derived
by the experiments [21]. Σc states were observed and studied in Λcπ decays, while excited Λc states decay mainly to
a Λcππ final state and decays through intermediated Σc resonances are possible. One peculiarity of the experimental
studies of these baryons is in their cross talks, which requires special care in the treatment of the background due to
different kinematic regions allowed for different sources.

In this analysis we exploit a large sample of Λ+
c → pK−π+ [22] decays collected by the CDF detector to perform

the measurement of the masses and widths of the discussed charmed baryons. We take into account all cross-talks and
threshold effects expected in the decays under study. The note is organized as follows. In section II we shortly describe
the CDF detector and trigger components important for this analysis. The candidate reconstruction is subject to
section III and the selection to section IV. After that, in section V we provide details of the fit which is followed by

Hadron ∆M [MeV/c2 ] Γ [MeV/c2 ]
Σc(2455)++ 167.56 ± 0.11 2.23 ± 0.3
Σc(2455)0 167.30 ± 0.11 2.2 ± 0.4

Σc(2520)++ 231.9 ± 0.6 14.9 ± 1.9
Σc(2520)0 231.6 ± 0.5 16.1 ± 2.1
Λc(2595)+ 308.9 ± 0.6 3.6+2.0

−1.3

Λc(2625)+ 341.7 ± 0.6 < 1.9

TABLE II. World average values for the mass differences ∆M of the studied charm hadrons to Λ+
c and their natural widths Γ

[13].
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the discussion of systematic uncertainties in sectionVI. Finally, the results are presented in section VII after which
we conclude in section VIII.

II. CDF DETECTOR AND TRIGGER

From the components and capabilities of the CDF II detector [23] the tracking system is the one most relevant
for this analysis. It lies within a uniform, axial magnetic field of 1.4 T strength. The inner tracking volume up to
a radius of 28 cm is filled with 6 − 7 layers of double-sided silicon microstrip detectors [24]. An additional layer of
single-sided silicon is mounted directly to the beam-pipe at a radius of 1.5 cm, providing an excellent resolution of the
impact parameter d0, defined as the distance of closest approach of the track to the interaction point in the transverse
plane. The remainder of the tracking volume up to a radius of 137 cm is occupied with an open-cell drift chamber
(COT) [25]. Hadron identification is crucial for distinguishing slow kaons and protons from pions. It is provided by a
likelihood combination of the ionization energy loss in the COT and a measurement by a time-of-flight system (TOF)
[26].

A three-level trigger system is used for the online event selection. The most important part for this analysis at level
1 is the extremely fast tracker (XFT) [27]. Its role is to find tracks of charged particles using information from the
COT and measuring their transverse momenta and azimuthal angles around the beam direction. The core of level 2
is the silicon vertex trigger (SVT) which takes XFT tracks as input and add information from SVX, thus allowing
the precise measurement of impact parameters of tracks. At level 3, a computing farm running a speed optimized
version of the offline software provides the final online selection. The basic requirements at level 1 are two tracks with
transverse momentum pT larger than 2 GeV/c. At level 2, the two tracks are required to have impact parameters in
the plane transverse to the beamline in the region of 100 µm to 1 mm and should be consistent with coming from a
single vertex displaced by at least 100 µm in the plane transverse to the beamline. Level 3 confirms this selection using
a more precise offline type reconstruction. The trigger itself is designed for b-hadrons, but has reasonable efficiency
also on c-hadrons. The sample collected for this analysis consists of approximately equal contributions of charm
baryons coming from Λb decays and direct cc production.

III. DATASET AND RECONSTRUCTION

The analysis is performed on the dataset which was collected by the CDF II detector at the Tevatron pp̄ collider
between February 2002 and June 2009 and corresponds to an integrated luminosity of 5.2 fb−1. The data was
cumulated using the displaced track trigger described in the previous section.

The offline reconstruction of candidates starts with track refitting using pion, kaon and proton mass hypotheses
to properly take into account differences in the multiple scattering and ionization energy losses. We require that all
tracks used in the analysis have a pT larger than 350 MeV/c. In the second step, three tracks, one with pion, one with
kaon and the last one with proton mass hypothesis, are combined to a Λc candidate. The three tracks are subject to
a kinematical fit which constraints them to originate from a common vertex. We require that the proton and pion
candidates have the same charge and that the total charge is ±1. The three track invariant mass has to be between
2.2 and 2.38 GeV/c2 and the χ2 of the fit to be less than 20. Finally, we require that two of the tracks used to form
the Λc candidate are consistent with the trigger requirement. To construct Σc(2455) and Σc(2520) candidates we
combine each Λc candidate with one of the remaining tracks in the event using the pion mass hypothesis. The four
tracks are subject to a kinematical fit with appropriate vertex topology constraint. We retain candidates with an
invariant mass between 2.3 and 2.65 GeV/c2 and a χ2 of the fit below 100. The Λc(2595) and Λc(2625) candidates are
obtained by combining each Λc candidate with all possible pairs of remaining tracks using the pion mass hypothesis
for both of them and subject the candidates to a kinematical fit with appropriate vertex topology constraint. We
retain all combinations which have an invariant mass between 2.4 and 2.8 GeV/c2 and a χ2 of the fit below 100.

We use simulated events to estimate the detector resolutions. As the resolution is mainly determined by kinematics
and just a tiny fraction of cc̄ events passes the trigger requirements, we generate only one sample starting with Λb,
where the Λb kinematics is generated in a way to match the momentum distributions of our total sample. The
generated particles are then inclusively decayed by EvtGen [28] into all possible charm baryons, which are further
decayed to the studied channels. In a final step, the Λc is forced to decay into pK−π+ with its resonance structure
taken into account. Afterwards, the generated events are passed through the detector simulation. As the trigger
selection is rather inefficient for Λc, we do not run the trigger simulation, but rather imitate the kinematical selection
using quantities from offline reconstruction. After detector simulation, the events are reconstructed by the same
reconstruction software as used for data.
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FIG. 1. The invariant mass distribution of Λc candidates used to train one of the two neural networks for Λc selection.

IV. CANDIDATE SELECTION

The selection of the candidates is done in two steps. In each step we first employ some quality requirements and
some requirements to remove the most obvious background. For the remaining candidates we use a neural network to
distinguish signal from background. As all final states feature a Λc daughter, as first step we perform a Λc selection.
In the second step we perform a dedicated selection for the four states we study in this work. All neural networks are
constructed using the NeuroBayes package [29, 30]. The output of the neural networks from this package is defined
to be between −1 and 1. All neural networks are trained using data only by means of the sPlot technique [31, 32].
This technique assigns a weight to each candidate that the candidate is signal, based on the discriminating variables,
which are required to be orthogonal to the ones used in the neural network. In our case, the discriminating variable
is the invariant mass of the candidate. In the training each candidate enters with a weight calculated from the signal
probability that is derived from its invariant mass. Based on these weights the neural network can learn the features
of signal and background events. Additionally, as we use only data for the neural network trainings, for each case
we split the sample to two parts (odd and even event numbers) and train two networks. Each of them is applied to
the orthogonal subsample in order to maintain a selection which is trained on a sample independent from the one to
which we apply it.

A. Λc selection

The Λc candidates entering into the neural network are required to have at least 10 axial and 10 stereo hits in the
COT for each daughter track, pT of the tracks larger than 400 MeV/c and for protons larger than 1.9 GeV/c, a χ2 of
the kinematical fit smaller than 22 and a displacement of the secondary vertex in the plane transverse to the beam,
Lxy, larger than 0.25 mm. In addition, we utilize particle identification information from TOF and dE/dx from COT.
We combine the two sources of information into a single variable

LLi(p) =
P i

dE/dx(p)P i
TOF (p)

∑

j=π,K,p fjP
j
dE/dx(p)P j

TOF (p)
, (1)

where the index i denotes the hypothesis for particle p. The P i
TOF (p) is the probability density to observe the measured

TOF given a particle of type i and correspondingly P i
dE/dx(p) the probability density to obtain the measurement of

dE/dx. The fractions fj used in the analysis are fπ = 0.7, fK = 0.2 and fp = 0.1. We place the requirement
LLp > 0.6 on the proton track and LLK > 0.2 on the kaon track. In case neither TOF nor dE/d is available for
a given track, we do not place the corresponding requirement and keep the candidate with a special value of the
corresponding LLi quantities. The invariant mass distribution of the candidates with even event numbers is shown
in Fig. 1. The fit with a Gaussian function for signal and a linear function for background defines probability density
functions (PDFs) used to calculate sPlot weights.
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Index Variable Index Variable
1 LLp(p) 8 pT (p)
2 σLxy (Λc) 9 ∢(Λc, K)
3 LLK(K) 10 pT (π)
4 ∢(Λc, p) 11 |d0/σd0

(K)|
5 χ2(Λc) 12 pT (K)
6 Lxy(Λc) 13 |d0/σd0

(p)|
7 |d0/σd0

(π)|

TABLE III. Inputs to the neural network for the Λ+
c selection sorted by their importance.
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FIG. 2. The invariant mass distribution of Λc candidates after requiring their neural network output to be larger than −0.5.

The final Λc selection is performed by means of a neural network. The full list of input quantities sorted by
their importance can be found in table III. In the table, |d0| denotes the impact parameter with respect to the
primary vertex of the pp̄ interaction for a track in the plane transverse to the beam direction, σd0

its uncertainty and
∢(Λc, t) the cosine of the angle between the directions of the momentum of the Λc candidate in the lab frame and
the momentum of the proton or kaon track in the center of mass frame of the Λc. These angles carry information
about the resonant substructure of the decay Λ+

c → p+K− π+. In order to show the ability of the neural network
to classify signal and background, the invariant mass distribution of Λc candidates with the requirement that their
neural network output is larger than −0.5 is shown in Fig. 2. In the analysis we apply a less stringent requirement,
namely −0.95 and use the output of the Λc neural network as input to the following stage.

B. Σc(2455) and Σc(2520) selection

The Σc(2455) and Σc(2520) selection starts with the application of a few soft requirements followed by the use of
a neural network. We require the output of the Λc neural network to be larger than −0.95, pT (π) of the added π to
be larger than 400 MeV/c, |d0(π)| < 1.5 mm and 2276.46MeV/c2 < M(Λc) < 2296.46MeV/c2. These requirements
are common for both neutral and doubly charged states. The mass difference ∆M = M(Σc)−M(Λc) distribution of
all the Λ+

c π
+ and Λ+

c π
− candidates is shown in Fig. 3. In the ∆M definition, M(Σc) and M(Λc) are the invariant

masses of the Σc and Λc candidates.
The neural network for the final selection of the Σc(2455) and Σc(2520) candidates uses five input quantities.

Ordered by their importance, those are the output of the Λ+
c neural network NN(Λ+

c ), the proper decay time of the
Σc candidate t(Σc) = Lxy(Σc) ·M(Σc)/pT (Σc), the quality of the kinematical fit of the Σc candidate χ2(Σc), the
uncertainty of the Σc impact parameter in the transverse plane σd0

(Σc) and the impact parameter in the transverse
plane of the slow pion |d0(π)|. Here, slow pion denotes the pion from the Σc decay. Separate neural networks are used
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FIG. 3. The mass difference distributions of the Λ+
c π+ (left) and Λ+

c π− (right) candidates before applying the neural network
selection.

]2) [MeV/c+
cΛ)-Mass(+π +

cΛMass(
140 160 180 200 220 240 260 280 300 320

2
C

an
di

da
te

s 
pe

r 
0.

5 
M

eV
/c

0

500

1000

1500

2000

2500
-1CDF Run II preliminary, L = 5.2 fb

]2) [MeV/c+
cΛ)-Mass(-π +

cΛMass(
140 160 180 200 220 240 260 280 300 320

2
C

an
di

da
te

s 
pe

r 
0.

5 
M

eV
/c

0

500

1000

1500

2000

2500

3000
-1CDF Run II preliminary, L = 5.2 fb

FIG. 4. The mass difference distribution for Σ++
c (left) and Σ0

c (right) candidates after the final selection requirements.

for Σ++
c and Σ0

c . The training itself is performed using candidates in the mass difference region from 155 MeV/c2

to 180 MeV/c2. We choose the requirement on the output of the Σc neural network to maximize S/
√
S +B, where

S is number of signal Σc events and B is number of background events in ∆M between 162.3 MeV/c2 and 172.3
MeV/c2. S and B are determined by a fit to the ∆M distribution in the range used for the training employing a
Gaussian function for the signal and a linear function for the background. The resulting requirement is the same for
both charge combinations. We show the ∆M distributions of the selected candidates in Fig. 4.

C. Λc(2595) and Λc(2625) selection

As initial step of the Λc(2595) and Λc(2625) selection we require the output of the Λc neural network to be larger
than −0.95, 2276.46MeV/c2 < M(Λc) < 2296.46MeV/c2, pT (π) of both added pions to be larger than 400 MeV/c
and the impact parameter of the object constructed from the two additional pions to be |d0(ππ)| < 1.0 mm. The
mass difference ∆M = M(Λ∗

c) −M(Λc) distribution is shown in Fig. 5.

We use the ∆M region between 327 MeV/c2 and 357 MeV/c2 for the neural network training. The sPlot weights
are based on a Gaussian function for the signal and a linear function for the background PDF. The neural network
uses four inputs. Ordered by their importance, those are the quality of the Λ∗

c kinematical fit χ2(Λ∗

c), the uncertainty
of the impact parameter of the combined two pions object σd0

(ππ), the output of the Λc neural network NN(Λc)
and the proper decay time of the Λ∗

c . As before, we choose the requirement which maximizes S/
√
S +B. S and B

are derived from the fit to the ∆M distribution using a Gaussian function for the signal and a linear function for the
background, where we count events in the region 326.7MeV/c2 < ∆M < 356.7MeV/c2. The resulting mass difference
distribution after final requirements can be found in Fig. 6.
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FIG. 5. The mass difference distribution of the Λ+
c π+π− candidates before applying the neural network selection.
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FIG. 6. The mass difference distribution of the Λ+
c π+π− candidates with the final selection applied.

V. FIT DESCRIPTION

In order to determine the mass differences relative to the Λc and the widths of the six studied states, we perform
binned maximum likelihood fits of three separate mass difference distributions. The first two are Λ+

c π
+ and Λ+

c π
−

which give the states Σc(2455)++,0 and Σc(2520)++,0. The last one is Λ+
c π

+π− for Λc(2595)+ and Λc(2625)+. A
complication arises from cross-talks, where in the case of the Σc states we need to take into account that a part of the
background comes from excited Λc decays and thus has different properties as the combinatorial background. On the
other hand, when fitting excited Λc states, there is a background contribution from random Σ++,0

c π−,+ combinations
which have a threshold close to the Λc(2595)+ state. In the following, we describe the details of the different fits with
their peculiarities.

In all three fits the negative log likelihood function has a general form of

L(~a) = −
J
∑

j=1

ln

(

µ
nj

j e−µj

nj !

)

= −
J
∑

j=1

nj lnµj +
J
∑

j=1

µj +
J
∑

j=1

ln(nj !), (2)

where ~a are the free parameters, J is the number of bins in the histogram of the corresponding mass difference
distribution, nj is the number of entries in bin j and µj is the expected number of entries in bin j. µj is obtained
using the function

f(∆M) = N1 · s1(∆M) +N2 · s2(∆M) + b(∆M), (3)

where Ni is the number of events of the corresponding class, s1(∆M) and s2(∆M) are the PDFs for the two signals
and b(∆M) is the background function. All three PDFs depend on a subset of the free parameters ~a. The function
is evaluated at the bin center when calculating the expectation. While the general structure is the same in all three
fits, the PDFs are specific to Σc and excited Λc states and details are described below.
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FIG. 7. Fit to the M(Λ+
c π+) − M(Λ+

c ) (left) and M(Λ+
c π−) − M(Λ+

c ) (right) distribution of the candidates from Λc mass
sidebands.

A. Σc(2455) and Σc(2520) fit

In each of the two distributions we need to parametrize two signals and several background components. We use
a range from 150 MeV/c2 to 320 MeV/c2. We do not start at threshold to avoid complications arising from the
description of the steep rise of background in this region. Both Σc(2455)++,0 and Σc(2520)++,0 are described by a
nonrelativistic Breit-Wigner function

dN

d∆M
∝ 1

2π
· Γ

(∆M − ∆M0)2 + Γ2/4
(4)

convolved with a resolution function. The resolution function itself is parametrized by a triple Gaussian with mean
of all three Gaussians fixed to zero and other parameters derived from simulated events. The mean width of the
resolution function is about 1.6 MeV/c2 for Σc(2455)++,0 and about 2.6 MeV/c2 for Σc(2520)++,0.

As the width of the resolution function has a significant uncertainty, which will be discussed in the next section,
we introduce a single scaling factor s by which the widths of all three Gaussians are multiplied. s is allowed to float
within a Gaussian constraint in the fit. Technically this corresponds to adding

0.5 ·
(

s− µ

σ

)2

(5)

with µ = 1 and σ = 0.2 to the negative logarithm of the likelihood.
In the analysis we consider three different types of background, namely random combinations without real Λc,

combinations of real Λc with a random pion and events due to the decay of excited Λc to Λ+
c π

+π−. The major part
comes from the first source of random combinations without real Λc. It is described by a second-order polynomial
with shape and amount derived in a fit to the ∆M distribution from Λc mass sidebands 2261.46MeV/c2 < M(Λc) <
2266.46MeV/c2 and 2306.46MeV/c2 < M(Λc) < 2311.46MeV/c2. In the Σc fit, this contribution is allowed to float
within a Gaussian constraint implemented by the addition of

0.5 · ~∆T · Cov−1 · ~∆, (6)

to the negative logarithm of the likelihood, where Cov is the covariance matrix of the fit to the ∆M distribution from

Λc mass sidebands and ~∆ is the vector of parameters of the second-order polynomial. The projections of the fits to
the distributions from Λc mass sidebands is in Fig. 7. The apparent difference between doubly charged and neutral
combinations can be explained by D∗(2010)+ mesons with multibody D0 decays, where we do not reconstruct all
D0 daughters. In order to describe this reflection, an additional Gaussian function is used. The second background
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source consisting of real Λc combined with a random pion is modeled by a third-order polynomial. As we do not have
an independent proxy for this source, all parameters are left free in the fit. The last source originating from excited
Λc decays is described using theoretical considerations. With good approximation, there are two states which we
need to take into account. Those are Λc(2595) and Λc(2625) with both of them decaying into a Λcπ

+π− final state.
The Λc(2595) decays dominantly to a Σcπ final state [13] and thus contributes mainly to the signal. So we neglect
its contribution to nonresonant Λcπ

+π−. On the other hand, the Λc(2625) decay is dominantly nonresonant [13]. To
model it, we start from the flat Λcπ

+π− Dalitz plot and project it on the appropriate axis. Since the shape of the
projection depends on the reconstructed Λcπ

+π− mass, we use 10 different values of the Λcπ
+π− invariant mass and

weight their contribution according to the shape we obtain from our Λcπ
+π− data.

B. Λc(2595) and Λc(2625) fit

As before, also the fit for Λc(2595) and Λc(2625) has two signals and several background components. Additional
complication compared to the Σc case arises from the fact that previous measurements of the Λc(2595) properties
indicate that it decays dominantly to the final state Σcπ, which has its threshold very close to the Λc(2595) mass. As
we discussed in the introduction, Ref. [21] shows that taking into account the strong variation of the natural width
yields masses which are below those measured by the experiments. With the statistics we have available we are much
more sensitive to the details of the Λc(2595) line shape than previous analyses. The fit is performed in a ∆M region
from 290 MeV/c2 to 400 MeV/c2.

The signal PDF for the Λc(2625) is the nonrelativistic Breit-Wigner function of equation 4 convolved with a
resolution function determined from simulation and consisting of three Gaussians with means fixed to zero. The mean
width of the resolution function is about 2.4 MeV/c2. As for the Σc case, we introduce a single, Gaussian constraint
scaling factor s by which the widths of all three Gaussians are multiplied, in order to account for the uncertainty in
the width of the resolution function.

The Λc(2595) parametrization follows Ref. [21]. The state is described by a nonrelativistic Breit-Wigner function
of the form

dN

d∆M
∝ Γ(Λ+

c π
+ π−)

(∆M − ∆MΛc(2595))
2 + (Γ(Λ+

c π+ π−) + Γ(Λ+
c π0 π0))2/4

, (7)

where Γ(Λ+
c π

+ π−) and Γ(Λ+
c π

0 π0) are the partial widths to the Λ+
c π

+ π− and Λ+
c π

0 π0 final states. Assuming that
those two final states cover most of the total width, the sum in the denominator corresponds to the total width. The
two partial widths are defined as

Γ(Λ+
c π

+ π−) =
g2
2

16π3f4
π

mΛc

∫

dE1dE2(|~p2|2|A(E1)|2 + |~p1|2|B(E2)|2

+ 2~p1 · ~p2Re[A(E1)B
∗(E2)]),

(8)

Γ(Λ+
c π

0 π0) =
g2
2

16π3f4
π

mΛc

∫

dE1dE2(|~p2|2|C(E1)|2 + |~p1|2|C(E2)|2

+ 2~p1 · ~p2Re[C(E1)C
∗(E2)]).

(9)

Here, fπ = 132MeV/c2 is the pion decay constant [33], mΛc
is the world-average Λc mass, E1,E2 are the energies of

the two pions in the rest frame of the Λc(2595) and ~p1,~p2 are the corresponding momenta. The coupling constant g2
is determined by the Σc decay width using the relation

ΓΣc
=

g2
2

2πf2
π

mΛc

mΣc

|~pπ|3 (10)

with mΣc
being the world average mass of the Σc(2455). From world average ΓΣc

= 2.2 MeV/c2 we obtain the
value g2

2 = 0.365 which is fixed in the fit. A, B and C are amplitudes for the decays Λc(2595)+ → Σc(2455)0 π+,
Λc(2595)+ → Σc(2455)++ π− and Λc(2595)+ → Σc(2455)+ π0 and are parametrized as

A(E) =
h2E

∆m− ∆mΣ0
c
− E + iΓΣ0

c
/2
, (11)
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c π0 π0) on M(Λc(2595))−M(Λc). The constant factor h2
2 is determined

by a fit to the experimental data.

B(E) =
h2E

∆m− ∆mΣ++
c

− E + iΓΣ++
c
/2
, (12)

C(E) =
1

2
· h2E

∆m− ∆mΣ+
c
− E + iΓΣ+

c
/2
. (13)

In these definitions, mΣ++,+,0
c

and ΓΣ++,+,0
c

are mass and width of the Σ++,+,0
c (2455) taken from Ref. [13]. The

coupling constant h2 is related to the decay width of the Λc(2595) and represents the quantity we measure instead
of the natural width. For illustration we show the dependence of the two partial widths in Fig. 8. The shape defined
by equation 7 is then numerically convolved with a three Gaussian resolution function determined from simulation,
which has a mean width of about 1.8 MeV/c2. Again, the means of all three Gaussians are fixed to zero and a single,
Gaussian constraint scaling factor s is introduced by which the widths of all three Gaussians are multiplied.

The background consists of three different sources which are combinatorial background without real Λc, real Λc

combined with two random pions and real Σ++,0
c combined with a random pion. As in the case of Σc, the combinatorial

background without real Λc is parametrized by a second order polynomial whose parameters are determined in a fit
to the ∆M distribution of candidates from the Λc mass sidebands 2261.46MeV/c2 < M(Λc) < 2266.46MeV/c2 and
2306.46MeV/c2 < M(Λc) < 2311.46MeV/c2. This distribution together with the fit projection can be found in
Fig. 9. In the final fit, we keep the parameters for this background floating within a Gaussian constraint of the form
of equation 6 to the values found in the fit to the candidates from Λc mass sidebands. The second source consisting of
real Λc combined with two random pions is parametrized by a second order polynomial with all parameters allowed
to float in the fit. The final source of background are real Σc combined with a random pion. For this source the main
issue is to have the proper shape close to the threshold, whereas small imperfections at higher ∆M can be ignored as
the second background source has enough flexibility to absorb it. The PDF is based on a uniform function defined
from the threshold to the end of the fit range. In order to take into account the natural widths as well as resolution
effects, we add together 10 such functions for both Σc(2455)++ and Σc(2455)0 with thresholds distributed according
to the shape derived in the Σc fits. The size of this contribution is constrained to the Σc(2455) yield obtained from
the fit to the M(Σc)−M(Λc) distribution for candidates with M(Λ∗

c)−M(Λc) > 355 MeV/c2. The two distributions
together with the fit projections are shown in Fig. 10.

VI. SYSTEMATIC UNCERTAINTIES

We investigate several systematic effects, which can affect our measurements. Generally, they can be categorized
as imperfect modeling by the simulation, imperfect knowledge of the momentum scale of the detector, ambiguities in
the fit model and uncertainties on the external inputs to the fit. In this section we discuss how they can affect our
results and the way we assess the size of the possible effects. A summary of the obtained uncertainties are in tables
IV to VI.

In order to properly describe the signal shapes, we need to understand the intrinsic resolution of the detector.
We estimate it using simulated events, but several issues can arise in such a process which can be split to several
categories. The first one deals with intrinsic difficulties to properly simulate the charge deposition in the detector
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c)− M(Λc) > 355 MeV/c2 together with the fit projection.

and thus providing incorrect uncertainties for the track parameters, which then reflects to a wrong ∆M uncertainty.
Second, we make some approximations in order to obtain sufficient statistics using reasonable computing resources.
This is motivated by the low efficiency of the triggers, which are not fully simulated. We also simulate just a single
source of the studied baryons, namely decays of Λb baryons, without the rest of the event. Finally, we do not simulate
multiple interactions within a single bunch crossing. We use D∗+ → D0π+ with D0 → Kπ and ψ(2S) → J/ψπ+π−

with J/ψ → µ+µ− to estimate the effect of those approximations. We compare our data with events simulated with
the same approximations as a function of the pT of the pions added to D0 or J/ψ and the instantaneous luminosity. We
also compare the overall resolution scale between data and simulated events and find that all variations are below 20%
which we assign as uncertainty on our knowledge of the resolution function. The contribution from this uncertainty
is already included in the uncertainties on the resonance parameters determined by the default fit with Gaussian
constraint on the resolution scale factor. To disentangle it from the statistical component, we repeat the fits on data
without multiplying the widths of the resolution function by the scale factor s. The systematic uncertainty due to
the imperfect modeling of the resolution function is then obtained by the difference in quadrature of the uncertainty
of the baseline fit from the uncertainty of the modified fit. As expected, this uncertainty in the resolution has a large
impact on the natural widths, but a negligible effect on the mass differences.

The imperfect knowledge of the momentum scale originates from our limited precision with which we measure
the magnetic field and the amount of material in the detector. The magnetic field is needed to relate the measured
curvature of the tracks to their momentum. Knowledge on the amount of material is important to properly estimate
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the energy loss of particles traversing the detector. Both parts are originally calibrated using J/ψ → µ+µ− decays.
The weak point with respect to this analysis is that this calibration uses muons which are required to have pT > 1.5
GeV/c, while pions from Σc of Λ∗

c decays typically have much lower pT . The estimation of the uncertainty on the
mass differences comes from our previous work on X(3872) [34]. There, ψ(2S) → J/ψπ+π− decays are used to study
the momentum scale uncertainties by comparing the measured ψ(2S) mass with the world average [13]. In addition,
we study ψ(2S) mass dependence on kinematic properties of the pions which put bounds on the size of the possible
effects. In addition, in the analysis at hand we verify the momentum scale also using D∗+ decays with difference to the
world average far below the uncertainty derived from ψ(2S). Based on Ref. [34] we assign a 0.12 MeV/c2 uncertainty
on the mass differences of all states under study due to the imperfect knowledge of the momentum scale. The effect
of this source on the natural width was studied in Ref. [35] and we assign the 0.2 MeV/c2 found there as uncertainty
on the natural width due to the imperfect knowledge of the momentum scale. To translate this uncertainty to the
coupling constant h2 we assign it to Γ(Λ+

c π
+ π−) + Γ(Λ+

c π
0 π0), which is a function of h2, and perform Gaussian

error propagation.
In tests of our fit model and procedure we check two effects. The first one is the internal consistency of the fit and

the second is the shape of the signal PDFs. We do not perform an explicit check of the background parametrizations
as those are described by polynomials and any analytic function can be approximated by a polynomial of sufficient
degrees. As the fit quality does not indicate significant discrepancies between data and model we conclude that the
degree of the polynomial functions used is sufficient. Some backgrounds are determined from independent sources, but
as the appropriate parameters are Gaussian constrained in the fit, the uncertainty originating from limited statistics of
the external sources, like Λc mass sidebands, is already included in the statistical uncertainties of the results. To check
the internal consistency of the fit procedure, we generate a large sample of pseudoexperiments using PDFs of our fit
model with parameters obtained from the fit on data. Estimates of all physics parameters but the mass differences and
natural widths of the Σc(2520) resonances are found to be unbiased. The bias on the natural widths can be explained
by the flexibility in the background PDF that may absorb low statistics signal tails. To be conservative, we repeat
the study with a true value for the Σc(2520) natural width of below (Γ = 7.5 MeV/c2) and above (Γ = 20 MeV/c2)
the measured value and find that the bias has a variation with the true value. The biases are largest for a true value
of the natural width of 20 MeV/c2 and we assign these biases as systematic uncertainties on the mass differences
and natural widths of the Σc(2520) states. In the case of excited Λc states we do not find any bias and conclude
that the uncertainty is negligible. For the second effect, the uncertainty on the signal shape, we check whether our
signal parametrization using nonrelativistic Breit-Wigner functions provides a proper description. We refit the Σc

and Λc(2625) data using P -wave relativistic Breit-Wigner functions of the form

dN

dm
∝ m · Γ(m)

(m2
0 −m2)2 +m2

0 · Γ2(m)
(14)

with

Γ(m) = Γ0

(

q

q0

)3
(m0

m

)

(

1 + q20R
2

1 + q2R2

)

, (15)

where m = ∆M +mΛc
, R is the Blatt-Weisskopf radius set to 3 (GeV/c)−1 [36, 37], m0 and Γ0 are the nominal mass

and width and q(q0) is the momentum of the daughters in the Σc or Λc(2625) rest frame calculated from the actual
(nominal) mass. As for the Λc(2595) a variable width is already taken into account, we only replace the nonrelativistic
Breit-Wigner function of equation 7 by a relativistic one. For the Σc(2455) we observe a difference of 0.02 MeV/c2

in the mass difference which we assign as systematic uncertainty. In the cases of Σc(2520) and excited Λc resonances
we do not observe any shift and conclude that the effect is negligible.

Finally, the lineshape of the Λc(2595) depends on the input values of the Σc(2455) masses and widths and the pion
decay constant fπ. We repeat the fit using values of those parameters smaller or larger by one standard deviation
and take the largest variation as systematic uncertainty. The effect of the uncertainty on the world average Σc(2455)
masses and widths used as input is dominant compared to the effect of the uncertainty on fπ.

The values of the assigned uncertainties are summarized in tables IV to VI. To obtain the total systematic
uncertainties, we add all sources in quadrature.

VII. RESULTS

Putting all ingredients together we perform fits of the M(Λ+
c π

+)−M(Λ+
c ), M(Λ+

c π
−)−M(Λ+

c ) and M(Λ+
c π

+π−)−
M(Λ+

c ) mass difference distributions to obtain the desired resonance properties. In Figs. 11 to 13 we show the
measured data distributions together with the fit projections. We see about 13800 Σc(2455)++, 15900 Σc(2455)0,
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Source ∆M(Σc(2455)++) Γ(Σc(2455)++) ∆M(Σc(2520)++) Γ(Σc(2520)++)
Resolution - 0.40 MeV/c2 - 0.69 MeV/c2

Momentum Scale 0.12 MeV/c2 0.20 MeV/c2 0.12 MeV/c2 0.20 MeV/c2

Fit Model 0.02 MeV/c2 - 0.11 MeV/c2 1.16 MeV/c2

Sum 0.12 MeV/c2 0.45 MeV/c2 0.16 MeV/c2 1.36 MeV/c2

Statistical 0.04 MeV/c2 0.13 MeV/c2 0.56 MeV/c2 2.12 MeV/c2

TABLE IV. Systematic uncertainties on the measurements of the mass differences and decay widths of the Σ++
c resonances.

The corresponding statistical uncertainties are listed for comparison.

Source ∆M(Σc(2455)0) Γ(Σc(2455)0) ∆M(Σc(2520)0) Γ(Σc(2520)0)
Resolution - 0.45 MeV/c2 - 0.70 MeV/c2

Momentum Scale 0.12 MeV/c2 0.20 MeV/c2 0.12 MeV/c2 0.20 MeV/c2

Fit Model 0.02 MeV/c2 - 0.11 MeV/c2 1.16 MeV/c2

Sum 0.12 MeV/c2 0.49 MeV/c2 0.16 MeV/c2 1.37 MeV/c2

Statistical 0.03 MeV/c2 0.11 MeV/c2 0.43 MeV/c2 1.82 MeV/c2

TABLE V. Systematic uncertainties on the measurements of the mass differences and decay widths of the Σ0
c resonances. The

corresponding statistical uncertainties are listed for comparison.

Source ∆M(Λc(2595)+) h2
2 Γ(Λc(2595)+) ∆M(Λc(2625)+)

Resolution 0.06 MeV/c2 0.03 0.22 MeV/c2 -
Momentum Scale 0.12 MeV/c2 0.03 0.20 MeV/c2 0.12 MeV/c2

Fit Model - - - -
∆M , Γ of Σc(2455) 0.15 MeV/c2 0.06 0.36 MeV/c2 -
Sum 0.20 MeV/c2 0.07 0.47 MeV/c2 0.12 MeV/c2

Statistical 0.14 MeV/c2 0.04 0.30 MeV/c2 0.04 MeV/c2

TABLE VI. Systematic uncertainties on the measurements of the mass differences of the excited Λc resonances and the pion
coupling constant h2

2 (Γ(Λc(2595)+)). The corresponding statistical uncertainties are listed for comparison.
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c ) distribution obtained from data (points with error bars) together with the fit projection
(black line). The brown and violet lines correspond to the two signal contributions, the green line represents the combinatorial
background without real Λc, the blue line shows real Λc combined with a random pion and the red dotted line represents a
reflection from excited Λc decays. The red dashed line corresponds to the sum of all three background contributions.
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background without real Λc, the blue line shows real Λc combined with a random pion and the red dotted line represents a
reflection from excited Λc decays. The red dashed line corresponds to the sum of all three background contributions.
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c ) distribution obtained from data (points with error bars) together with the fit projection
(black line). The brown and violet lines correspond to the two signal contributions, the green line represents the combinatorial
background without real Λc, the blue line shows real Λc combined with two random pions and the red dotted line represents
real Σc combined with a random pion. The red dashed line corresponds to the sum of all three background contributions.

8800 Σc(2520)++, 9000 Σc(2520)0, 3500 Λc(2595)+ and 6200 Λc(2625)+ signal events. For the resonance parameters
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we obtain

∆M(Σc(2455)++) = 167.44 ± 0.04 (stat.) ± 0.12 (syst.) MeV/c2,

Γ(Σc(2455)++) = 2.34 ± 0.13 (stat.) ± 0.45 (syst.) MeV/c2,

∆M(Σc(2455)0) = 167.28 ± 0.03 (stat.) ± 0.12 (syst.) MeV/c2,

Γ(Σc(2455)0) = 1.65 ± 0.11 (stat.) ± 0.49 (syst.) MeV/c2,

∆M(Σc(2520)++) = 230.73 ± 0.56 (stat.) ± 0.16 (syst.) MeV/c2,

Γ(Σc(2520)++) = 15.03 ± 2.12 (stat.) ± 1.36 (syst.) MeV/c2,

∆M(Σc(2520)0) = 232.88 ± 0.43 (stat.) ± 0.16 (syst.) MeV/c2,

Γ(Σc(2520)0) = 12.51 ± 1.82 (stat.) ± 1.37 (syst.) MeV/c2,

∆M(Λc(2595)+) = 305.79 ± 0.14 (stat.) ± 0.20 (syst.) MeV/c2,

h2
2(Λc(2595)+) = 0.36 ± 0.04 (stat.) ± 0.07 (syst.),

∆M(Λc(2625)+) = 341.65 ± 0.04 (stat.) ± 0.12 (syst.) MeV/c2.

For the width of the Λc(2625) we obtain a value consistent with zero and therefore calculate an upper limit using a
Bayesian approach with a uniform prior restricted to positive values. At the 90% C.L. we obtain Γ(Λc(2625)+) < 0.97
MeV/c2. For easier comparison to previous results, h2

2 corresponds to Γ(Λc(2595)+) = 2.59 ± 0.30 ± 0.47 MeV/c2.
Except of ∆M(Λc(2595)+), all measured quantities are in reasonable agreement with previous measurements. For
∆M(Λc(2595)+) we observe a value which is by 3.1 MeV/c2 smaller than the existing world average. This difference
is of the same size as found in Ref. [21]. The precision for the Σc states is comparable to the precision of the world
averages. In the case of excited Λc states our measurements provide a significant improvement on precision against
previous measurements. This is mainly driven by about 30-fold larger statistics than observed before.

VIII. CONCLUSIONS

While the CDF detector is optimized for the detection of b-hadrons, it still provides a large amount of c-hadrons. In
this paper we exploit the world largest samples of excited charm baryons to measure the resonance parameters of six
states, namely Σc(2455)++, Σc(2455)0, Σc(2520)++, Σc(2520)0, Λc(2595)+ and Λc(2625)+. We obtain the following
masses and widths:

M(Σc(2455)++) = 2453.90 ± 0.13 ± 0.14MeV/c2,

Γ(Σc(2455)++) = 2.34 ± 0.47MeV/c2,

M(Σc(2455)0) = 2453.74 ± 0.12 ± 0.14MeV/c2,

Γ(Σc(2455)0) = 1.65 ± 0.50MeV/c2,

M(Σc(2520)++) = 2517.19 ± 0.46 ± 0.14MeV/c2,

Γ(Σc(2520)++) = 15.03 ± 2.52MeV/c2,

M(Σc(2520)0) = 2519.34 ± 0.58 ± 0.14MeV/c2,

Γ(Σc(2520)0) = 12.51 ± 2.28MeV/c2,

M(Λc(2595)+) = 2592.25 ± 0.24 ± 0.14MeV/c2,

h2
2(Λc(2595)+) = 0.36 ± 0.08,

M(Λc(2625)+) = 2628.11 ± 0.13 ± 0.14MeV/c2,

Γ(Λc(2625)+) < 0.97MeV/c2 at 90% C.L.,

where the first uncertainty is the experimental one and for the masses the second uncertainty is the one on the
world average Λc mass. These measurements provide a significant improvement on the knowledge of the resonance
parameters for the studied baryons.
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